Catching Halley’s Comet in 2062


An image of Halley’s Comet taken in 1986. Credit: NASA

Aside from tracking weather on other planets, some volcanism, and the sun’s own petulant outbursts, our solar system is a pretty staid place for astronomers and space travellers.

Today marks the 31st anniversary of the last time we could see with our naked eyes Halley’s comet from Earth. That means there are 46 years before this giant snowball passes by our planet again. But where will humans be in the year 2062?

Ah, 31 years seems like yesterday. The year 1986 welcomed an international armada of space probes from Russia, Japan, and Europe all hoping to meet up and get to know Halley’s Comet. The spacecraft Giotto, named after the Italian painter Giotto di Bondone who painted the comet’s portrait back in 1301, flew closest to Halley’s Comet and basked in her halo of space dust.

If things go according to plan, NASA will have sent humans to Mars and the Moon on Orion by 2023. As NASA would have it, this would be old news, because human strolls into deep space would have been happening annually for four decades by 2062.

How It All Started

Planets and moons follow orbits under the strict laws of gravity. As first scientifically recognized by Sir Edmund Halley 300 years ago, comets are the biggest wildcard among the planets. Comets come and go unpredictably and can undergo spectacular transformations as they swing close to the blistering sun.

Now falling inexorably toward a nail-biting close encounter with the sun in late November, comet ISON has mesmerized the planetary community. Its journey is being tracked at different points along its orbit by numerous ground and space base telescopes. What could be better?

Imagine being able to fly formation with the comet’s icy nucleus like a fighter plane escorting the President’s Air Force One jumbo jet. The spacecraft would transmit daily reports of changes in the comet’s effervescent surface. The probe would watch eruptions of water-ice geysers and other unpredictable cryo-fireworks as the icy nucleus warms near the sun.

This 24/7 monitoring can’t be done for comet ISON because it was only discovered a year ago. An interceptor vehicle and accompanying super-booster would need to have been waiting in a clean room ready for setup and launch. Therefore, a comet rendezvous mission would have to target a short-period comet with a well-known orbit. Such a comet would not be as scientifically exciting as ISON because it would have made many trips around the sun and been “thermally processed” so that it lost a lot of pristine ices. Nevertheless, an ideal target we could start planning for now is comet Halley.

The first historical footnote of this comet swinging by Earth dates back to 446 BC according to ancient Greek records. Isaac Newton’s friend Edmond Halley first realized that this comet was periodic. Halley’s analysis revealed that the comets of 1531, 1607, and 1682 moved in almost identical orbits and were separated by intervals of roughly 75 years. Using Newton’s laws of gravity he correctly predicted the comet would next appear in 1758. Unfortunately, Halley died in 1742 and so did not live to seen his forecast come true.

Last seen by naked-eye observers in 1986, Halley’s Comet will reach its farthest point from the sun on Dec. 9, 2023, at a distance of 3.3 billion miles. It will then begin to fall back toward the sun like a baseball dropping back to the ground. The comet will be best seen from Earth in late July 2061 when it sweeps within 50 million miles of our planet.

Though Halley is not as exciting as ISON, its celebrity status might help garner public support and hence political support for a space visit. Regrettably, this didn’t work back in the 1970s when a string of three different Halley space missions proposed by NASA were turned down. The new space shuttle program was using most of NASA’s budget, and space science missions had to fiercely compete for remaining dollars.

A solar-sail propulsion system (pictured here) needed for a Halley probe was rejected. Funding instead went to the Compton Gamma-Ray Observatory (launched in 1991). According to Former JPL Director Bruce Murray (who, sadly, died on Aug. 29), U.S. President Jimmy Carter was fascinated by black holes and so favored funding the CGRO instead of a comet jaunt.

It’s impossible to predict the status of the U.S. space program in the coming decades, but let’s be optimistic and expect that space technology will have advanced to the point where the requirements for a Halley rendezvous mission would be comparatively trivial and use lots of off-the-shelf components. It might easily be an offshoot from any number of robotic missions designed for visits to asteroids.

The big caveat is that it would take a powerful propulsion system to match the comet’s velocity. This, preferably, would be a nuclear rocket which, pound for pound, is much more efficient and brawny than chemical engines. What’s more, Halley is falling in from far below a the plane of the solar system, and so even more energy is needed to go “out-of-ecliptic” to reach it.

No doubt mission designers would put Mother Nature to work by launching the Halley probe out to Jupiter or Saturn. The probe would then rob orbital momentum from either of these massive worlds. This would not only give the craft a boost in speed but reversal of direction to catch up with and pace the sunward falling comet.

In my mission scenario the probe finally reaches the cold, inactive Halley nucleus in mid-2060 at a distance of a few hundred million miles from the sun. After rendezvous, the probe settles into a safe distance from the Manhattan Island-sized nucleus to avoid being sandblasted when dust starts streaming off the surface. The probe flies ahead of the peanut-shaped nucleus, upstream from the solar wind-blown tail of dust and gas.

Onboard, artificial intelligence carries out the mission with minimal input from ground controllers. A wide-angle camera transmits nonstop images of the entire nucleus. Narrow angle cameras and spectrometers seek out active regions in the crust such as fissures or other breaks that allow gases to shoot out like a rocket exhaust. The probe deploys any number of nanobot subsatellites to skim closer to the comet surface and monitor interesting new activity. Nanobot “spiders” are also deposited on the surface for in-situ chemical analysis and geomorphology studies.

The probe stays alongside the nucleus well after it has skimmed close to the sun and hurtled back toward the frigid outer solar system. Because the probe is nuclear-powered the mission duration can last for decades. The space robot diligently watches the nucleus go into frozen hibernation until its next return in 2134.

It’s impossible to predict what our great great grandchildren of 2134 will think of the comet. Will we have learned enough about comets by then that it no longer interests astronomers? The only motivation for yet another rendezvous might be to salvage the 2061 probe and bring it back to the Smithsonian National Air & Space museum as a relic of the golden age of solar system exploration. Source: DNews


Read previous post:
Micrometeorites Can Be Found On Your Rooftop

Do you dread having to clean out those rain gutters...

Anniversary – Shepherd Golfs On The Moon

Jason Day may rule the golf course here on Earth,...

A Universe Full Of Questions

I’m often asked questions at the end of a lecture...