Space Medicine Isn’t Just For Astronauts. It’s For All Of Us

Auñón-Chancellor, 43, has been a NASA flight surgeon for 13 years, but she’s also an electrical engineer, an aquanaut and a practicing physician specializing in both internal and aerospace medicine.

Oh, and she recently returned to Earth from a six-month stay, which included Expeditions 56 and 57, at the ISS. Though only a few hundred humans have made it into space, the medical research conducted in microgravity by people like Auñón-Chancellor directly impacts the medical care of everyone on Earth. While orbiting the planet, she’s performed studies that have expanded our knowledge of the human body and conducted bioscience experiments that may improve the lives of people with conditions including cancer, Parkinson’s disease and osteoporosis.

“People think science we do on the space station only relates to space exploration,” she says. “They don’t realize how much it matters to medical care of everyday living here on Earth.” Auñón-Chancellor blasted into space on June 6, 2018, from the Russian-operated Baikonur Cosmodrome in Kazakhstan. She says the ride was surprisingly smooth, given that the Russian Soyuz MS-09 spacecraft delivered 930,000 pounds of thrust, taking her and her crewmates, Flight Engineer Alexander Gerst from Germany and Commander Sergey Prokopyev from Russia, on a ride at 1,100 miles per hour.

During the launch, Auñón-Chancellor remembers, she was completely focused on the 8 minutes, 40 seconds it took to get to an orbit of approximately 129 miles high, while making sure there weren’t any malfunctions. The most fascinating part was when the shroud came off around the capsule and she saw the Earth from space for the first time.

Following 34 Earth orbits, the Soyuz connected to the ISS. She floated slowly inside with her arms wide open. “Your brain really doesn’t know what to do because there’s really no up or down anymore. You can move around on the ceiling or the walls or the floors,” she says. “But the first time I tried to do that, I would just turn myself in circles because I wasn’t sure where I was.”

Aging in space
Weirder is what happens to the human body in microgravity. Astronauts lose critical minerals such as calcium, with bone mass dropping about 1% per month, according to NASA. It’s a similar effect to a person with osteoporosis. As bones become brittle, people with osteoporosis disease can also experience a hunched posture or loss of height.

Those changes give researchers the opportunity to use astronauts like Auñón-Chancellor to better understand the effects of aging. She collected and saved samples of her blood, urine, saliva and even her feces. “It’s not easy to collect your urine in orbit,” she says. In microgravity urine droplets can float all over the place, potentially damaging equipment. “But we’re constantly making changes to the kits so that we can perfect that science.”

The samples were later analyzed by scientists on the ground. As part of the myotomes muscle study, for example, they studied how to better understand resting muscle tone. The results could lead to new treatments for aging and for those with limited mobility. “It’s interesting because they can look at us and maybe even test certain medications with the sort of bone loss that we have,” Auñón-Chancellor says. “That also impacts millions of Americans on the ground who also have osteoporosis.”

In addition to being the subject of study, she also conducted hundreds of experiments related to human health. For example, she examined biological samples like bovine and human sperm for a fertility study that will help scientists understand if human reproduction could possibly happen in outer space.

She also helped to crystallize a protein, leucine-rich repeat kinase 2, that’s present in patients with Parkinson’s disease. (During the course of the study she observed that the protein crystals grew larger and more uniformly in microgravity than they do on Earth.) Analyzing the protein’s structure can help scientists better understand the role it plays in Parkinson’s, which could lead to improved medicines for the disease.

Medicine in microgravity
During her 197 days aboard the ISS, Auñón-Chancellor also studied endothelial cells, the cells that line your blood vessels, to help determine if ECs grown in microgravity can serve as a good model system for cancer therapy trials. “I was most proud of the cancer research that we did because what it showed us was that cells that grow in microgravity really like to grow,” she says.

Because one of the hallmarks of cancer is its ability to form new blood vessels that feed a tumor, medication that kills that blood supply could help lead to a cure. In space, Auñón-Chancellor says, endothelial cells grow for longer than they do on Earth and in a form that’s similar to how they exist in the body. That lets scientists better test chemotherapy agents or new cancer drugs.

Auñón-Chancellor is confident that what’s learned in space will be useful back on the planet below. “Pretty quickly, even within the next three to five years, they could help us provide cures for cancer down here on the ground.”

Read previous post:
How to Go to the Bathroom/Washing and Shaving in Space

Former shuttle astronaut Mike Massimino will never forget the time he had...

Let’s Think About Using Hot Air Balloons to Get to Space

The second space race is in full effect. And while...

Our Super-Star Sun

  The next time you get burnt red from being...