When Curiosity Almost Took Men to Mars

Curiosity heading to a landing on Mars in August 2012

We’re a couple of weeks away from one of the most highly anticipated Martian landings of all time.On Aug. 5 NASA’s Mars Science Laboratory rover Curiosity will land in Gale Crater.

 The incredibly sophisticated rover is a mobile laboratory designed to run tests on soil to determine whether or not the Martian environment ever had the conditions to support life. But in the 1960s, the future of Mars exploration looked very different. In many instances, there were men aboard the spacecraft that were designed to fly by the red planet rather than land on it.

In the 1960s, NASA considered flyby missions almost as readily as it did landing missions. The proposals, like some of the more interesting missions to Venus, came from Bellcom, a division of AT&T established in 1963 to assist NASA with research, development, and overall documentation of systems integration.

A 1966 Bellcomm proposal cites the weight of a spacecraft bound for Mars as the mission’s limiting factor. That’s unsurprising. It takes a lot of fuel to send a spacecraft into orbit, and more to send it to an interplanetary destination.

But the planets can actually lend a hand on these long distance missions. If a spacecraft passes a planet at the right point, its gravity will slingshot the spacecraft away adding momentum to its interplanetary flight. This is how the Voyager spacecraft managed their impressive tours of the outer solar system. The same gravity assist maneuvers can be equally effective in the inner solar system, and while it might seem counter intuitive, Bellcomm engineers found that a mission to Mars could benefit from flying by Venus on its way to the red planet.

 A September 1967 proposal outlines a possible triple-flyby mission that would send a spacecraft to Venus and Mars on. Based on the geometry of the planets — taking advantage of optimal alignment — the ideal launch date for this mission was May 26, 1981. The spacecraft would launch towards Venus, reaching the planet on Dec. 28. It would whip around and head for Mars, making its contact on Oct. 5, 1982. The inbound leg of the journey would take it back by Venus on March 1, 1983 before returning to Earth on July 25. The mission would last 790 days.

The launch window for this proposal was 30 days. Launching on another date in the window would change the duration of the mission, making it last anywhere from 720 days to 850 days.

Three-planet flybys were thought to be rare; the 1981 launch window came as a surprise to the Bellcomm engineers. It inspired them to look for similar opportunities and they found that conditions for triple-flybys are actually fairly common. By October 1967, the company had identified a dual-flyby mission, one that would send a spacecraft to Venus then Mars and back to Earth with the option to revisit Venus on the inbound leg. In this scenario, a launch on Nov. 28, 1978 would take the spacecraft by Venus on May 11, 1979, Mars on Nov. 25, 1979, and Venus again on Jan. 29, 1980 before returning to Earth on Jan. 31, 1981.

For possible crews aboard these missions, they would have a long trip likely filled with astronomical observations punctuated by exciting days spent flying by Venus and Mars. Both proposals sent the crew within 1,200 miles of the surface of Venus; in 1970 this would happen on the day side of the planet while the 1980 opportunity would take them into the planet’s dark side. Of course, infrared sensors and mapping radar would work either way. For the engineers and NASA, this was a cost efficient way to send men to Mars.

These kinds of proposals would probably never gain any serious traction in NASA’s current climate, especially not for manned missions. The duration alone would likely draw criticism, though it’s not much shorter than the roughly 500 day mission most direct missions to Mars are expected to take. But a swing by Venus could return valuable data, and give the crew not one but two fascinating sights during their mission. Source: Discovery News  Image credit: NASA/JPL

PHOTOS: When Discovery News Met Mars Rover ‘Curiosity’

HOWSTUFFWORKS: How the Mars Curiosity Rover Works

PHOTOS: Seven Minutes of Terror for Mars Rover Curiosity

Team Selected to Eat on ‘Mars’: DNews Nugget

Curiosity Update

Artist's concept of NASA's Mars Odyssey spacecraft passing above Mars' south pole

NASA's Mars Odyssey spacecraft passes above Mars' south pole in this artist's concept. The spacecraft has been orbiting Mars since October 24, 2001. Image credit: NASA/JPL

NASA’s Mars Odyssey spacecraft has successfully adjusted its orbital location to be in a better position to provide prompt confirmation of the August landing of the Curiosity rover.

NASA’s Mars Science Laboratory spacecraft carrying Curiosity can send limited information directly to Earth as it enters Mars’ atmosphere. Before the landing, Earth will set below the Martian horizon from the descending spacecraft’s perspective, ending that direct route of communication. Odyssey will help to speed up the indirect communication process.

NASA reported during a July 16 news conference that Odyssey, which originally was planned to provide a near-real-time communication link with Curiosity, had entered safe mode July 11. This situation would have affected communication operations, but not the rover’s landing. Without a repositioning maneuver, Odyssey would have arrived over the landing area about two minutes after Curiosity landed.

Artistic impression of the 2001 Mars Odyssey o...

Artistic impression of the 2001 Mars Odyssey on martian orbit (Photo credit: Wikipedia)

A spacecraft thruster burn Tuesday, July 24, lasting about six seconds has nudged Odyssey about six minutes ahead in its orbit. Odyssey is now operating normally, and confirmation of Curiosity’s landing is expected to reach Earth at about 10:31 p.m. PDT on Aug. 5 (early Aug. 6, EDT and Universal Time), as originally planned.

“Information we are receiving indicates the maneuver has completed as planned,” said Mars Odyssey Project Manager Gaylon McSmith of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “Odyssey has been working at Mars longer than any other spacecraft, so it is appropriate that it has a special role in supporting the newest arrival.”

Two other Mars orbiters, NASA’s Mars Reconnaissance Orbiter and the European Space Agency’s Mars Express, also will be in position to receive radio transmissions from the Mars Science Laboratory during its descent. However, they will be recording information for later playback, not relaying it immediately, as only Odyssey can.

Odyssey arrived at Mars in 2001. Besides conducting its own scientific observations, it has served as a communication relay for NASA’s Spirit and Opportunity Mars rovers and the Phoenix lander on the Martian surface. NASA plans to use Odyssey and the Mars Reconnaissance Orbiter as communication relays for Curiosity during that rover’s two-year prime mission on Mars.

Odyssey and the Mars Science Laboratory, with its Curiosity rover, are managed for NASA’s Science Mission Directorate in Washington by JPL, a division of the California Institute of Technology in Pasadena. Curiosity was built at JPL.  For more about the Mars Odyssey mission, visit http://mars.jpl.nasa.gov/odyssey .


 Will Curiosity Look for Life on Mars? Not Exactly…

And with these words this latest video from NASA’s Jet Propulsion Laboratory begins, explaining what Curiosity’s goal will be once it arrives on Mars on August 5. There will be a lot of media coverage of the event and many news stories as the date approaches, and some of these will undoubtedly refer to Mars Science Laboratory as a “search for life on Mars” mission… but in reality the focus of MSL is a bit subtler than that (if no less exciting.)

But hey, one can always dreamVideo: NASA/JPL


Read previous post:
Oldest Spiral Galaxy In Universe Found

New Spiral Galaxy Is One Of The Oldest In Universe...

Spitzer Reveals Earth Has A Hot New Neighbour

 Spitzer Reveals Earth's Hot New Neighbour. Located about 33 light...

Giant Lightning Flash Seen in Saturn Storm

A Giant Flash Of Lightning Spotted On Saturn.  An enormous...